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Objective: To evaluate the role of plasminogen activator inhibitor-1 (PAI-1), urokinase plasminogen activator
(uPA), and tissue-type plasminogen activator (tPA) in adhesion formation after laparoscopic surgery.

Design: Prospective, randomized study.

Setting: Academic research center.

Animal(s): Seventy female wild-type and transgenic knockout mice for PAI-1 (PAI-1�/�), uPA (uPA�/�) or
tPA (tPA�/�).

Intervention(s): Standardized lesions to induce peritoneal adhesions were performed during laparoscopy. To
evaluate basal adhesions and pneumoperitoneum-enhanced adhesions, the pneumoperitoneum was maintained
for 10 minutes or 60 minutes, respectively. Peritoneal biopsy samples were obtained during and after 60
minutes of carbon dioxide pneumoperitoneum.

Main Outcome Measure(s): Adhesions were blindly scored after 7 days. Concentrations of PAI-1 and tPA
were measured by using enzyme-linked immunosorbent assay.

Result(s): In PAI-1, uPA, and tPA wild-type mice, pneumoperitoneum enhanced adhesions. Compared with
wild-type mice, basal adhesions were fewer in PAI-1�/� mice and more in uPA�/� and tPA�/� mice.
Pneumoperitoneum did not enhance adhesions in these transgenic mice. PAI-1 concentration increased after
60 minutes of pneumoperitoneum whereas tPA concentration did not change.

Conclusion(s): Impaired fibrinolysis increases basal adhesions. The absence of pneumoperitoneum-enhanced
adhesions in PAI-1�/�, uPA�/�, and tPA�/� mice and the increase in PAI-1 expression indicate that PAI-1
up-regulation by carbon dioxide pneumoperitoneum is a mechanism of pneumoperitoneum-enhanced adhe-
sion formation. (Fertil Steril� 2003;80:184–92. ©2003 by American Society for Reproductive Medicine.)
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Peritoneal injury initiates an inflammatory
reaction that determines fibrin deposition on
the injured surface and migration, proliferation,
and differentiation of various cell types, such
as inflammatory and immune cells, mesothelial
cells, and fibroblasts. These cells release mol-
ecules that modulate the subsequent evolution
of the peritoneal lesion to normal healing or to
adhesion formation.

After complete fibrinolysis, few or no adhe-
sions form, whereas insufficient fibrinolysis will

provide a scaffold for migrating cells (fibroblasts)
and capillaries. The latter process results in ex-
tracellular matrix deposition and angiogenesis,
leading eventually to adhesion formation (1–3).
This information is based on a series of studies
demonstrating more adhesions with decreased
fibrinolysis (4) and fewer adhesions with in-
creased fibrinolysis, such as after the adminis-
tration of plasminogen activator inhibitor-1
(PAI-1) antibodies (5) or of recombinant tis-
sue-type plasminogen activator (tPA) (6–12).
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Besides its role in fibrin degradation, the plasminogen
system has a direct role in other processes of tissue repair,
such as activation of proenzymes of the matrix metallopro-
tease family (13), extracellular matrix degradation (14), ac-
tivation of urokinase-type plasminogen activator (uPA) (15),
liberation and activation of growth factors (16, 17), angio-
genesis (18), and cellular migration (19). It is unclear
whether the reported effects on adhesion formation involve
only fibrinolysis or other processes as well.

The plasminogen system is a complex system comprising
the serine protease plasmin, zymogen plasminogen, plasmin-
ogen activators (tPA and uPA), plasminogen activator inhib-
itors (PAI-1, PAI-2, PAI-3, and protease nexin 1), and plas-
min inhibitors (�2-macroglobulin, �2-antiplasmin, and �1-
antitrypsin) (20–23). Plasminogen is abundant in almost all
tissues and is converted to plasmin by tPA and uPA. Both
uPA and tPA are equally efficient in degradation of fibrin
clots in blood, whereas tPA seems to have a higher efficacy
in tissue (24–27).

The activity of tPA and uPA is modulated mainly by the
glycoproteins PAI-1 and PAI-2 through formation of inac-
tive complexes. Plasminogen activator inhibitor-1 has a
stronger inhibitory action than PAI-2. The other PAIs and
the plasmin inhibitors are considerably less active (28–31).

The overall fibrinolytic activity in the peritoneum is cru-
cial in the pathogenesis of adhesion formation. Whereas tPA,
uPA, PAI-1, and PAI-2 have been widely studied, PAI-3,
protease nexin 1, and plasmin inhibitors have not. Peritoneal
fibrinolytic activity decreases after different types of perito-
neal trauma, such as suturing, retractors, foreign bodies, and
infection (2, 32, 33). Peritoneal fibrinolytic activity is mod-
ulated by various proinflammatory cytokines released after a
peritoneal injury; such cytokines include tumor necrosis
factor-�, interleukins 1 and 6, and transforming growth
factor-�, which decrease the fibrinolytic activity of human
mesothelial cells in vitro (34–37).

Postoperative adhesion formation in vivo has been inves-
tigated mainly after open surgery. We recently demonstrated
in rabbits and mice that the pneumoperitoneum is a cofactor
in adhesion formation after laparoscopic surgery. We sug-
gested that mesothelial hypoxia is the driving mechanism for
this pneumoperitoneum-enhanced adhesion formation, since
adhesions increase with the duration of pneumoperitoneum
and insufflation pressure and decrease with the addition of
oxygen to both carbon dioxide and helium pneumoperito-
neum (38–41). This finding led to categorization of adhe-
sions as basal (occurring after a peritoneal lesion only) or
pneumoperitoneum enhanced (occurring after a peritoneal
lesion with the additional effect of the pneumoperitoneum).

The importance of trauma with tissue necrosis and the
inflammatory reaction and repair mechanism, involving local
cellular hypoxia, has been recognized in adhesion formation
(42–46). Furthermore, hypoxia modulates the expression of

several molecules involved in different stages of adhesion
formation, such as PAI-1, tPA, transforming growth fac-
tor-�, matrix metalloproteinases, and tissue inhibitors of
metalloproteinases (47–56).

We sought to evaluate the role of PAI-1, uPA, and tPA in
basal and in pneumoperitoneum-enhanced adhesion forma-
tion after surgery by using a laparoscopic mouse model. The
choice of PAI-1, uPA, and tPA was dictated by the avail-
ability of knockout mice for genes encoding for these fac-
tors.

MATERIALS AND METHODS

Animals
The study was performed in 70 female 10- to 12-week old

mice that weighed 30 to 40 g.

For the first experiment, we used twenty 87.5% C57Bl/6J
� 12.5% 129SvJ wild-type and transgenic mice that were
deficient for the gene encoding for PAI-1 (PAI-1�/� and
PAI-1�/�). For the second experiment, we used thirty 75%
C57Bl/6J � 25% 129SvJ wild-type and transgenic mice that
were deficient for the genes encoding for uPA (uPA�/� and
uPA�/�) and tPA (tPA�/� and tPA�/�). All wild-type and
transgenic mice were obtained from the Center for Trans-
gene Technology and Gene Therapy of the Katholieke Uni-
versiteit Leuven. The uPA, tPA, and PAI-1 knockout mice
were generated as described elsewhere (57–59). For the third
experiment, 20 Naval Medical Research Institute mice were
used.

The animals were kept under standard laboratory condi-
tions (temperature 20°C to 22°C, relative humidity 50% to
60%, 14 hours light and 10 hours dark) at the animal facil-
ities of the Katholieke Universiteit Leuven. They were fed a
standard laboratory diet (Muracon G; Carsil Quality, Turn-
hout, Belgium) and had constant free access to food and
water. The study was approved by the Institutional Review
Animal Care Committee.

Anesthesia
After anesthesia with pentobarbital (Nembutal; Sanofi

Sante Animale, Brussels, Belgium), 0.07 mg/g, was admin-
istered i.m., the abdomen was shaved and the animal was
secured to the table in the supine position. Endotracheal
intubation was performed with a 22-gauge catheter (In-
syte-W, Vialon; Becton Dickinson, Madrid, Spain) by tran-
sillumination of the vocal cords. The catheter was connected
to a mechanical ventilator (Rodent Ventilator; Harvard Ap-
paratus, Holliston, MA), and the animal was ventilated with
room air (tidal volume 500 �L, 85 strokes/min).

Laparoscopy
Laparoscopy was performed as described in detail else-

where (41). In brief, a 3.5-mm midline incision was per-
formed caudal to the xyphoides appendix, and a 2-mm
endoscope with a 3.3-mm external sheath (Karl Storz, Tüt-
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tlingen, Germany) was introduced into the abdominal cavity.
The endoscope was connected to a video camera (Karl Storz)
and a light source (Karl Storz) and secured in a holder.
Because the mouse abdominal wall is very thin, gas leakage
occurred, causing flow to vary. Therefore, the incision was
suture gas tight around the endoscope by using 6/0 polypro-
pylene suture (Prolene; Ethicon, Johnson and Johnson Inter-
national, Brussels, Belgium).

For the pneumoperitoneum, the gas was insufflated
through the main port with the Thermoflator Plus (Karl
Storz), using heated (37°C) (Optitherm; Karl Storz) and
humidified (Aquapor; Dräger, Lübeck, Germany) 100% car-
bon dioxide as the insufflation gas. An insufflation pressure
of 17 mm Hg and a flow rate of 1.5 L/min together with a
water valve and an elastic balloon were used to ascertain a
continuous insufflation pressure of 20 cm H2O (about 15 mm
Hg).

The water valve and the balloon are necessary to adapt the
flow rate to a mouse and to dampen the pressure changes
during insufflation. Any excess of carbon dioxide freely
escapes from the water valve, whereas pressure is main-
tained accurately in the water valve and changes in pressure
are minimized.

Because the peritoneum has a large surface and high
exchange capacity, in theory some oxygen could diffuse
from the circulation to the abdominal cavity. To ascertain
continuously a constant 100% carbon dioxide concentration
in the abdominal cavity, the gas was continuously replaced.
This was achieved by inserting a 26-gauge needle (BD
Plastipak; Becton Dickinson) through the abdominal wall,
providing a continuous flow through the abdominal cavity of
10 mL/min at 20 cm H2O. The pneumoperitoneum was
maintained for different periods according to the experimen-
tal design.

Induction of Intraperitoneal Adhesions
Induction of adhesions was performed as described pre-

viously (41). After carbon dioxide pneumoperitoneum was
established, two 14-gauge catheters (Insyte-W, Vialon; Bec-
ton Dickinson) were inserted under laparoscopic vision in
the right and left flank for the working instruments. The
uterus was grasped in the midline by using a 1.5-mm
grasper, and standardized 10-mm � 1.6-mm lesions were
made in the antimesenteric border of both right and left
uterine horns by monopolar or bipolar coagulation (10 W,
standard coagulation mode, for 10 seconds) (Autocon 350;
Karl Storz). Identical lesions were made in right and left
pelvic sidewalls. The type of lesion in each side was ran-
domly determined. Monopolar coagulation was performed
with a homemade 1.6-mm ball electrode, whereas bipolar
coagulation was performed with a 1.6-mm probe (Bicap;
Circon Corp., Santa Barbara, CA).

To evaluate postoperative basal adhesion formation and
pneumoperitoneum-enhanced adhesion formation, the pneu-

moperitoneum was maintained for the minimum time needed
to induce the peritoneal lesions (10 minutes) or for a longer
period (60 minutes), respectively. The secondary ports were
removed after the peritoneal lesions were completed, and the
incisions were closed. The first incision was closed at the end
of the surgery. All incisions were closed in a single layer
with 6/0 polypropylene suture (Prolene; Ethicon, Johnson
and Johnson International).

Scoring of Adhesions
A xyphopubic midline incision and a bilateral subcostal

incision were made, and the abdominal cavity was explored
by laparotomy 7 days after induction of adhesions, as de-
scribed elsewhere (41). After the evaluation of port sites and
viscera, the pelvic fat tissue was carefully removed and
adhesions were blindly scored under microscopic vision by
using a qualitative and a quantitative scoring system.

In the qualitative scoring system, which was modified
from that of Leach et al. (60), the following characteristics
were assessed: extent (0, no adhesions; 1, 1% to 25%; 2,
26% to 50%; 3, 51% to 75%; 4, 76% to 100% of the injured
surface involved), type (0, no adhesions; 1, filmy; 2, dense;
3, capillaries present), tenacity (0, no adhesions; 1, falls
apart; 2, requires traction; 3, requires sharp dissection), and
total (extent � type � tenacity). The quantitative scoring
system was described by Holmdahl et al. (61). This system
has the advantage of precluding subjective interpretation. It
measures the proportion of the lesions covered by adhesions
by using the following formula: adhesions (%) � (sum of the
length of the individual attachments/length of the lesion) �
100.

Results are presented as the average of the adhesions
formed at the four individual sites (right and left visceral and
parietal peritoneum, with lesions inflicted by monopolar or
bipolar coagulation), which were individually scored.

Tissue Sampling, Protein Extraction, and
Assays for PAI-1, tPA, and Total Protein

The abdomen was opened at different times before or
after exposure to pneumoperitoneum as described above, and
biopsy samples were obtained from the pelvic sidewall
within the first 4 minutes. The samples were rinsed with
ice-cold phosphate-buffered saline, frozen immediately in
liquid nitrogen, and stored at �80°C. Tissues were homog-
enized in 500 �L of phosphate-buffered saline containing
1% Triton X-100 (diluted), 0.1% sodium dodecylsulfate,
0.5% sodium deoxicholate, 0.2% sodium azide, and a cock-
tail of protease inhibitors (Complete; Roche Diagnostics
GmbH, Mannhein, Germany).

After centrifugation (8500 � g at 4°C for 10 minutes), the
supernatants were assayed for total protein, PAI-1, and tPA
concentration. Tissue protein concentration was measured by
using a detergent-compatible formulation based on bicincho-
ninic acid for the colorimetric detection and quantification of
total protein. Bovine serum albumin was used as a standard
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(BCA Protein Assay Kit; Pierce, Rockford, United King-
dom). Concentrations of PAI-1 and tPA were measured as
described elsewhere (62, 63) by using a homemade ELISA.
All samples were assayed at four serial dilutions, and results
(pg of PAI-1/mg of protein or pg of tPA/mg of protein) are
expressed as the mean (�SE).

Experimental Design
All experiments were performed using block randomiza-

tion by day. Therefore, one block of mice, comprising one
animal of each group, was operated during the same day.
Within a block, animals were operated in random order.

In the first experiment (n � 20), peritoneal adhesions
were induced as described, and basal adhesions and pneu-
moperitoneum-enhanced adhesions were assessed in PAI-1
wild-type mice (n � 5 and n � 5, respectively) and PAI-1
knockout mice (n � 5 and n � 5, respectively).

In the second experiment (n � 30), peritoneal adhesions
were induced as described, and basal adhesions and pneu-
moperitoneum-enhanced adhesions were assessed in uPA/
tPA wild-type mice (n � 5 and n � 5, respectively), uPA
knockout mice (n � 5 and n � 5, respectively), and tPA
knockout mice (n � 5 and n � 5, respectively).

In the third experiment (n � 20), we evaluated the effect
of 60 minutes of exposure to carbon dioxide pneumoperito-
neum, with no other peritoneal lesion, on the time course of
expression of PAI-1 and tPA in the abdominal wall. Samples
were collected before (n � 5) and immediately (n � 5) or 3
(n � 5) or 6 hours (n � 5) after 60 minutes of pneumoperi-
toneum.

Statistical Analysis
Statistical analysis was performed with SAS software

(SAS Institute, Cary, NC), using a nonparametric test
(Kruskal–Wallis) to compare individual groups and Spear-
man correlation to evaluate association. All data are pre-
sented as the mean (�SE). P values �.05 were considered
statistically significant.

RESULTS
All animals survived the surgical procedures and, in the

adhesion formation experiments, all were available for ad-
hesion scoring after 7 days. Adhesions formed between the
injured visceral site and the pelvic fat or between the injured
parietal site and the pelvic fat. No adhesions were observed
at the site of the laparoscopic ports or at other sites.

Monopolar lesions systematically induced more adhe-
sions than bipolar lesions. The respective proportion of ad-
hesions among monopolar and bipolar lesions were as fol-
lows: in PAI-1 wild-type mice, 16% � 3% and 4% � 2% for
basal adhesions and 25% � 4% and 14% � 3% for pneu-
moperitoneum-enhanced adhesions; in PAI-1�/� mice, 6%
� 4% and 3% � 3% for basal adhesions and 8% � 3% and
2% � 2% for pneumoperitoneum-enhanced adhesions; in

uPA/tPA wild-type mice, 8% � 5% and 4% � 3% for basal
adhesions and 18% � 5% and 15% � 3% for pneumoperi-
toneum-enhanced adhesions; in uPA�/� mice, 12% � 4%
and 12% � 6% for basal adhesions and 18% � 2% and 8%
� 3% for pneumoperitoneum-enhanced adhesions; and in
tPA�/� mice, 29% � 2% and 21% � 7% for basal adhesions
and 24% � 7% and 19% � 3% for pneumoperitoneum-
enhanced adhesions.

Similar data were obtained in terms of scores for extent,
type, tenacity, and total adhesions (data not shown). To
maximize statistical significance, only the means of both
nonpolar and bipolar lesions are used for further analysis.

In PAI-1 wild-type mice, pneumoperitoneum enhanced
adhesion formation (proportion, P�.02; extent, P�.01; type,
P�.01; tenacity, P�.01; total, P�.01). Compared with
PAI-1 wild-type mice, basal adhesions were lower in PAI-
1�/� mice (proportion, P�.03; extent, P�.02; type, P�.01;
tenacity, P�.02; total, P�.01). In PAI-1�/� mice, pneumo-
peritoneum did not enhance adhesions. Therefore, compared
with PAI-1 wild-type mice, pneumoperitoneum-enhanced
adhesions were even lower in PAI-1�/� mice (proportion,
P�.01; extent, P�.01; type, P�.01; tenacity, P�.01; total,
P�.01) (Fig. 1, Table 1). Similar effects were observed
when monopolar and bipolar lesions were analyzed individ-
ually.

In uPA/tPA wild-type mice, pneumoperitoneum en-
hanced adhesion formation (proportion, P�.03; extent, P�

F I G U R E 1

Proportion of basal adhesions (�) and pneumoperitoneum-
enhanced adhesions (■ ) in wild-type and knockout mice for
plasminogen activator inhibitor-1 (PAI-1�/� and PAI-1�/�).
Data are means (�SE). *P�.05, Kruskal–Wallis analysis, for
pneumoperitoneum-enhanced versus basal adhesions; †P
�.05, Kruskal–Wallis analysis, for knockout versus wild-type
mice.

Molinas. Plasminogen system, laparoscopy, and adhesions. Fertil Steril 2003.
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.02; type, P not significant; tenacity, P�.02; total, P�.03).
Compared with uPA/tPA wild-type mice, basal adhesions
were higher in both uPA�/� mice (P not significant) and
tPA�/� mice (proportion, P�.02; extent, P�.02; type, P
�0.03; tenacity, P�.03; total, P�.02). In both uPA�/� and
tPA�/� mice, pneumoperitoneum did not enhance adhe-
sions. Compared with uPA/tPA wild-type mice, pneumo-
peritoneum-enhanced adhesions were similar in both
uPA�/� and tPA�/� mice. The tPA�/� mice developed
more basal adhesions (extent, P�.04) and more pneumoperi-
toneum-enhanced adhesions (type, P�.05; tenacity, P �.03)
than did uPA�/� mice (Fig. 2, Table 2). Similar effects were
observed when monopolar and bipolar lesions were analyzed
individually.

The protein concentration of PAI-1 in the abdominal wall
increased (Spearman correlation) for at least 6 hours after 60
minutes of carbon dioxide pneumoperitoneum exposure (P
�.001). By Kruskal–Wallis analysis, the increase in PAI-1
concentration was significant after 1 hour (P�.02), 3 hours

(P�.02), and 6 hours (P�.01) (Fig. 3). The protein concen-
tration of tPA did not change significantly over time after 60
minutes of exposure to carbon dioxide pneumoperitoneum
(P not significant, Spearman correlation; P not significant,
Kruskal–Wallis analysis compared with control group) (Fig.
3).

DISCUSSION
We used a laparoscopic mouse model to evaluate forma-

tion of basal and pneumoperitoneum-enhanced adhesions.
Basal adhesions results not only from a peritoneal lesion
inflicted by electrocautery but also from the effect of as little
as 10 minutes of carbon dioxide pneumoperitoneum. Forma-
tion of basal adhesions independent of an additional effect of
carbon dioxide pneumoperitoneum would require the short-
est duration of pneumoperitoneum possible, the minimum
insufflation pressure, and 3% oxygen added to the carbon
dioxide pneumoperitoneum, since adhesion formation de-

T A B L E 1

Basal adhesions and pneumoperitoneum-enhanced adhesions in wild-type and knockout mice for plasminogen
activator inhibitor-1.

Genotype Type of adhesion

Scores

Extent Type Tenacity Total

PAI-1�/� (n � 10) Basal 0.6 � 0.1 0.8 � 0.1 0.9 � 0.1 2.2 � 0.2
Pneumoperitoneum-enhanced 1.3 � 0.1a 1.6 � 0.1a 1.7 � 0.1a 4.5 � 0.2a

PAI-1�/� (n � 10) Basal 0.2 � 0.1b 0.2 � 0.1b 0.3 � 0.1b 0.7 � 0.3b

Pneumoperitoneum-enhanced 0.3 � 0.1b 0.3 � 0.1b 0.4 � 0.2b 1.0 � 0.3b

Note: Data are means (�SE). PAI-1 � plasminogen activator inhibitor-1.
a P�.05 for pneumoperitoneum-enhanced vs. basal adhesions.
b P�.05 for knockout vs. wild-type mice.

Molinas. Plasminogen system, laparoscopy, and adhesions. Fertil Steril 2003.

T A B L E 2

Basal adhesions and pneumoperitoneum-enhanced adhesions in wild-type and knockout mice for urokinase and
tissue-type plasminogen activator.

Genotype Type of adhesion

Scores

Extent Type Tenacity Total

uPA�/�/tPA�/�(n � 10) Basal 0.4 � 0.1 0.5 � 0.2 0.5 � 0.2 1.3 � 0.4
Pneumoperitoneum-enhanced 0.9 � 0.1a 0.9 � 0.1 1.1 � 0.1a 2.9 � 0.2a

uPA�/� (n � 10) Basal 0.6 � 0.1 0.9 � 0.2 0.8 � 0.1 2.2 � 0.4
Pneumoperitoneum-enhanced 0.8 � 0.1 0.8 � 0.1 0.8 � 0.1 2.3 � 0.3

tPA�/� (n � 10) Basal 1.3 � 0.2b 1.9 � 0.4b 1.8 � 0.4b 4.9 � 0.9b

Pneumoperitoneum-enhanced 1.2 � 0.2 1.5 � 0.3 1.7 � 0.3 4.4 � 0.7

Note: Data are means (�SE). tPA � tissue-type plasminogen activator; uPA � urokinase plasminogen activator.
a P�.05 for pneumoperitoneum-enhanced vs. basal adhesions.
b P�.05 for knockout vs. wild-type mice.

Molinas. Plasminogen system, laparoscopy, and adhesions. Fertil Steril 2003.
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creases with shorter duration of pneumoperitoneum, lower
pressure, and with the addition of oxygen (38–41).

To evaluate basal adhesions, pneumoperitoneum was
maintained for the minimum time required to induce the
lesions (standardized at 10 minutes). However, we used
100% carbon dioxide at 20 cm H2O because a lower pressure
and the addition of oxygen, although theoretically better,
would introduce additional variables. Using both controls
was not feasible because of the limited availability of trans-
genic animals.

To our knowledge, this is the first report on adhesion
formation in PAI-1, uPA, and tPA knockout mice using a
laparoscopic model. The effects of these components of the
plasminogen system on basal adhesion formation were as
expected and confirmed the findings of previous studies
(2–12). Compared with wild-type mice, PAI-1 knockout
mice developed fewer adhesions, whereas both uPA and tPA
knockout mice developed more adhesions. This effect was
expected since the lack of uPA and tPA reduces plasmin
activation and fibrin degradation, thus leading to adhesion
formation, whereas the lack of PAI-1 reduces the inactiva-
tion of uPA and tPA, increasing plasmin levels and fibrin
degradation, thus reducing adhesion formation.

The smaller increase in adhesion formation in uPA than in
tPA knockout mice is also consistent with the effects of
recombinant uPA and tPA in animal models. Whereas tPA
administration clearly reduces adhesion formation, the re-

sults of uPA administration are controversial (6–12, 64).
These differences between uPA and tPA could be explained
by the fact that uPA activity requires the specific binding of
plasminogen to fibrin, whereas tPA activity is greatly en-
hanced by fibrin, since its binding to its specific receptor
exposes a strong plasminogen-binding site on the surface of
the fibrin molecule (26, 65–67).

This study also confirmed our previous finding that the
pneumoperitoneum is a cofactor in adhesion formation (38–
41). Pneumoperitoneum-enhanced adhesions were observed
in all wild-type mice.

The absence of pneumoperitoneum-enhanced adhesions
in PAI-1, uPA, and tPA knockout mice may be explained by
postulating that pneumoperitoneum-enhanced adhesion for-
mation observed in wild-type mice was due at least in part to
up-regulation of PAI-1. In PAI-1 knockout mice, up-regula-
tion of PAI-1 and, thus, pneumoperitoneum-enhanced adhe-
sions is impossible. Mice lacking uPA or tPA already have
increased basal adhesions. Up-regulation of PAI-1 would not
inhibit the nonexistent uPA and tPA activity and would thus
not further increase adhesion formation.

Up-regulation of PAI-1 in carbon dioxide pneumoperito-
neum was confirmed by the ELISA of the abdominal wall.
This finding is consistent with the reported up-regulation of
PAI-1 in hypoxia (53–55), since carbon dioxide pneumo-
peritoneum-enhanced adhesion formation is probably medi-
ated by mesothelial hypoxia (41).

It is unclear whether pneumoperitoneum-induced me-
sothelial damage causes an inflammatory reaction, which
could up-regulate PAI-1. Indeed, PAI-1 is regulated by many
factors, such as thrombin, endotoxin, interleukin-1, tumor
necrosis factor-�, transforming growth formation-�, trauma,
and infection; a common link among these factors is the
inflammatory reaction (68–70).

Tissue injury locally up-regulates PAI-1 and down-regu-
lates tPA (33, 71–73), probably in response to local hypoxia
or inflammation (or both). The carbon dioxide pneumoperi-
toneum up-regulates PAI-1 and down-regulates tPA (74),
probably in response to hypoxia or inflammation in the entire
peritoneal mesothelium. It therefore remains unclear whether
the mechanisms of PAI-1 up-regulation after tissue injury
(hypoxia and inflammation) or after pneumoperitoneum
(hypoxia followed by inflammation) are identical. More de-
tailed investigations are required in the normal and in the
damaged peritoneum to elucidate the effects of the duration
of pneumoperitoneum, insufflation pressure, and addition of
oxygen.

Adhesion formation varied with the strain of mice used.
The 87.5% C57Bl/6J � 12.5% 129SvJ mice developed more
adhesions than did 75% C57Bl/6J � 25% 129SvJ mice.
These strain differences were seen for both basal adhesions
and pneumoperitoneum-enhanced adhesions. However,

F I G U R E 2

Proportion of basal adhesions (�) and pneumoperitoneum-
enhanced adhesions (■ ) in wild-type and knockout mice for
urokinase plasminogen activator and tissue-type plasmino-
gen activator (uPA�/�/tPA�/�, uPA�/�, and tPA�/�). Data
are means (�SE). *P�.05, Kruskal–Wallis analysis, for pneu-
moperitoneum-enhanced versus basal adhesions; †P�.05,
Kruskal–Wallis analysis, for knockout versus wild-type mice.
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these data should be interpreted with caution because they
are derived from two different experiments.

Taking all our available data together, adhesion formation
seems to be most pronounced in Naval Medical Research
Institute and Swiss mice and least in 129SvJ mice. The
C57Bl/6J mice had an intermediate rate of adhesion forma-
tion. These findings were observed in experiments with
100% Naval Medical Research Institute (41, 75), 100%
Swiss, 87.5% Swiss – 12.5% 129SvJ, 75% Swiss – 25%
129SvJ, 50% Swiss – 50% 129SvJ, and 100% C57Bl/6J
mice (Molinas CR, et al., unpublished data). Again, how-
ever, these data should be interpreted with caution because
they are combined from different experiments. To ascertain
and evaluate these finding, we are planning further studies.

Differences among strains may yield useful information
concerning the pathophysiology of adhesion formation.
These observations are not surprising, since strain differ-
ences have been reported for fibrosis and healing responses
in such situations as hepatic fibrosis (76), lung fibrosis (77),
colorectal fibrosis (78), ear wound healing (79), myocardial
healing (80), and bone regeneration (81).

Monopolar lesions systematically induced more adhe-
sions than did bipolar lesions. This was not surprising, since
monopolar lesions produced macroscopically larger lesions.
The surgical trauma of both monopolar and bipolar coagu-

lations is well documented and depends on the power setting
and duration of the procedure (82). The exact relationship
between surgical trauma and adhesion formation, however,
has never been explored.

Pneumoperitoneum clearly enhanced both monopolar and
bipolar lesions in wild-type mice. The data do not allow us
to determine whether pneumoperitoneum simply adds an
adhesion factor—for example, 10 or so additional points on
the scoring system—or whether it amplifies basal adhesions.

In conclusion, our data confirm the role of PAI-1, uPA,
and tPA in formation of basal adhesions and the role of the
pneumoperitoneum as a cofactor in adhesion formation. Our
findings in knockout mice and on ELISA indicate that PAI-1
up-regulation is a mechanism for pneumoperitoneum-en-
hanced adhesion formation. This is consistent with the con-
cept that carbon dioxide pneumoperitoneum causes mesothe-
lial hypoxia and with up-regulation of PAI-1 through
hypoxia in injured areas of peritoneum.
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